PROCESS DYNAMICS AND CONTROL

COURSE CODE:15CH1122

COURSE OUTCOMES:

At the end of the course the student shall be able to

- **CO1** Develop the transfer function for a first order system and obtain the response equation for a given forcing function.
- **CO 2** Compute the higher order transfer functions. Describe the controller system.
- **CO3** Draw block diagram, analyze the responses for different modes of control and predict stability using Routh criterion.
- **CO**4 Apply Root Locus and frequency response methods to assess the stability of a control system.
- **CO 5** Create block diagram for different advanced control strategies. Discuss controller tuning and control valves characteristics.

UNIT-I

Response of first order system, Physical examples of first order systems, Response of first order systems in series

UNIT-II

(14 LECTURES)

(14 LECTURES)

Higher order systems and transportation lag, Control systems, Controllers and final control elements

UNIT-III

Closed loop transfer functions, Transient response of simple control systems, Stability

UNIT-IV

Root locus, Introduction to frequency response: Bode diagrams of first and second order systems with and without lag, Control systems design by frequency response

(10 LECTURES)

(6 LECTURES)

L

3

Т

0

Ρ

0

С

3

UNIT-V

14

(6 LECTURES)

ADVANCED CONTROL STRATEGIES:

Cascade control, Feed forward control, Ratio control, Controller tuning and Process Identification, Control valves.

TEXT BOOKS:

1 D R Coughanowr, "Process systems Analysis and Control", 3rd Edition, McGraw Hill, 2013.

REFERENCES:

1. G. Stephanopoulos, "Chemical Process Control", PHI, 1998.